Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Language
Document Type
Year range
1.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3924614

ABSTRACT

SARS-CoV-2 variants of concern exhibit varying degrees of transmissibility and, in some cases, escape from infection- and vaccine-induced immunity. Much effort has been devoted to measuring these phenotypes, but predicting their impact on the course of the pandemic – especially that of immune escape – remains a challenge. Here, we use a mathematical model to simulate the dynamics of wildtype and variant strains of SARS-CoV-2 in the context of vaccine rollout and nonpharmaceutical interventions. We show that variants with enhanced transmissibility easily rise to high frequency, whereas partial immune escape, on its own, often fails to do so. However, when these phenotypes are combined, enhanced transmissibility can carry the variant to high frequency, at which point partial immune escape may limit the ability of vaccination to control the epidemic. Our findings suggest that moderate immune escape poses a low risk unless combined with a substantial increase in transmissibility.Funding: MB and BPT were supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under award number R01AI128344. RK, ML and WPH were supported by the U.S. National Cancer Institute SeroNet cooperative agreement U01CA261277.Declaration of Interests: RK discloses consulting fees from Partners In Health and the PanAmerican Health Organization. ML received funding through his institution from US CDC, NIH, and UK National Institute for Health Research, and Pfizer, and consulting fees or honoraria from Merck,Sanofi Pasteur, Janssen, and Bristol Myers Squibb. He is a member of the Scientific Advisory Board for CEPI, the Coalition for Epidemic Preparedness Innovations. WPH serves on the Advisory Board of Biobot Analytics and has received compensation for expert witness testimony on the course of the SARS-CoV-2 pandemic. All others have nothing to disclose.

2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.26.21262579

ABSTRACT

SARS-CoV-2 variants of concern exhibit varying degrees of transmissibility and, in some cases, escape from infection- and vaccine-induced immunity. Much effort has been devoted to measuring these phenotypes, but predicting their impact on the course of the pandemic - especially that of immune escape - remains a challenge. Here, we use a mathematical model to simulate the dynamics of wildtype and variant strains of SARS-CoV-2 in the context of vaccine rollout and nonpharmaceutical interventions. We show that variants with enhanced transmissibility easily rise to high frequency, whereas partial immune escape, on its own, often fails to do so. However, when these phenotypes are combined, enhanced transmissibility can carry the variant to high frequency, at which point partial immune escape may limit the ability of vaccination to control the epidemic. Our findings suggest that moderate immune escape poses a low risk unless combined with a substantial increase in transmissibility.

3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.10.21258580

ABSTRACT

Wastewater surveillance has emerged as a useful tool in the public health response to the COVID-19 pandemic. While wastewater surveillance has been applied at various scales to monitor population-level COVID-19 dynamics, there is a need for quantitative metrics to interpret wastewater data in the context of public health trends. We collected 24-hour composite wastewater samples from March 2020 through May 2021 from a Massachusetts wastewater treatment plant and measured SARS-CoV-2 RNA concentrations using RT-qPCR. We show that the relationship between wastewater viral titers and COVID-19 clinical cases and deaths varies over time. We demonstrate the utility of three new metrics to monitor changes in COVID-19 epidemiology: (1) the ratio between wastewater viral titers and clinical cases (WC ratio), (2) the time lag between wastewater and clinical reporting, and (3) a transfer function between the wastewater and clinical case curves. We find that the WC ratio increases after key events, providing insight into the balance between disease spread and public health response. We also find that wastewater data preceded clinically reported cases in the first wave of the pandemic but did not serve as a leading indicator in the second wave, likely due to increased testing capacity. These three metrics could complement a framework for integrating wastewater surveillance into the public health response to the COVID-19 pandemic and future pandemics.


Subject(s)
COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.10.21253235

ABSTRACT

Wastewater-based disease surveillance is a promising approach for monitoring community outbreaks. Here we describe a nationwide campaign to monitor SARS-CoV-2 in the wastewater of 159 counties in 40 U.S. states, covering 13% of the U.S. population from February 18 to June 2, 2020. Out of 1,751 total samples analyzed, 846 samples were positive for SARS-CoV-2 RNA, with overall viral concentrations declining from April to May. Wastewater viral titers were consistent with, and appeared to precede, clinical COVID-19 surveillance indicators, including daily new cases. Wastewater surveillance had a high detection rate (>80%) of SARS-CoV-2 when the daily incidence exceeded 13 per 100,000 people. Detection rates were positively associated with wastewater treatment plant catchment size. To our knowledge, this work represents the largest-scale wastewater-based SARS-CoV-2 monitoring campaign to date, encompassing a wide diversity of wastewater treatment facilities and geographic locations. Our findings demonstrate that a national wastewater-based approach to disease surveillance may be feasible and effective.


Subject(s)
COVID-19
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.16.20214106

ABSTRACT

Nonpharmaceutical interventions, such as contact tracing and quarantine, are currently the primary means of controlling the spread of SARS-CoV-2; however, it remains uncertain which interventions are most effective at reducing transmission at the population level. Using serial interval data from before and after the rollout of nonpharmaceutical interventions in China, we estimate that the relative frequency of presymptomatic transmission increased from 34% before the rollout to 71% afterward. The shift touward earlier transmission indicates a disproportionate reduction in transmission post-symptom onset. We estimate that, following the rollout of nonpharmaceutical interventions, transmission post-symptom onset was reduced by 82% whereas presymptomatic transmission decreased by only 16%. These findings suggest that interventions which limit opportunities for transmission in the later stages of infection, such as contact tracing and isolation, may have been particularly effective at reducing transmission of SARS-CoV-2.

6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.15.20117747

ABSTRACT

Current estimates of COVID-19 prevalence are largely based on symptomatic, clinically diagnosed cases. The existence of a large number of undiagnosed infections hampers population-wide investigation of viral circulation. Here, we use longitudinal wastewater analysis to track SARS-CoV-2 dynamics in wastewater at a major urban wastewater treatment facility in Massachusetts, between early January and May 2020. SARS-CoV-2 was first detected in wastewater on March 3. Viral titers in wastewater increased exponentially from mid-March to mid-April, after which they began to decline. Viral titers in wastewater correlated with clinically diagnosed new COVID-19 cases, with the trends appearing 4-10 days earlier in wastewater than in clinical data. We inferred viral shedding dynamics by modeling wastewater viral titers as a convolution of back-dated new clinical cases with the viral shedding function of an individual. The inferred viral shedding function showed an early peak, likely before symptom onset and clinical diagnosis, consistent with emerging clinical and experimental evidence. Finally, we found that wastewater viral titers at the neighborhood level correlate better with demographic variables than with population size. This work suggests that longitudinal wastewater analysis can be used to identify trends in disease transmission in advance of clinical case reporting, and may shed light on infection characteristics that are difficult to capture in clinical investigations, such as early viral shedding dynamics.


Subject(s)
COVID-19
7.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-17453.v1

ABSTRACT

As of February 13, 2020, there have been 59,863 laboratory-confirmed cases of COVID-19 infections in mainland China, including 1,367 deaths. A key public health priority during the emergence of a novel pathogen is estimating clinical severity. Here we estimated the symptomatic case-fatality risk (sCFR; the probability of dying from the infection after developing symptoms) of COVID-19 in Wuhan using public and published information. We estimated that sCFR was 0.5% (0.1%-1.3%), 0.5% (0.2%-1.1%) and 2.7% (1.5%-4.7%) for those aged 15-44, 45-64 and >64 years. The overall sCFR among those aged ≥15 years was 1.4% (0.8%-2.0%). Authors Joseph T Wu and Kathy Leung contributed equally to this work


Subject(s)
COVID-19 , Machado-Joseph Disease
SELECTION OF CITATIONS
SEARCH DETAIL